ИДЗ – 2.1
№ 1.25. Даны вектора a = α·m + β·n; b = γ·m + δ·n; |m| = k; |n| = ℓ; (m;n) = φ;
Найти: a)( λ·a + μ·b )·( ν·a + τ·b ); б) проекцию ( ν·a + τ·b ) на b; в) cos( a + τ·b ).
Дано: α =5; β = -8; γ = -2; δ = 3; k = 4; ℓ = 3; φ = 4π/3; λ = 2; μ = -3; ν = 1; τ = 2.
№ 2.25. По координатам точек А; В и С для указанных векторов найти: а) модуль вектора a; б) скалярное произведение векторов a и b; в) проекцию вектора c на вектор d; г) координаты точки M; делящей отрезок ℓ в отношении α:.
Дано: А(–5;4; 3); В( 4; 5; 2); С( 2; 7; – 4 ); …….
№ 3.25. Доказать, что вектора a;b;c образуют базис и найти координаты вектора d в этом базисе.
Дано: a( 3; 1;2); b( –4; 3; –1 ); c( 2; 3; 4 ); d( 14; 14; 20 )
Спасибо за покупку. Если возникнут вопросы, то пишите на почту ( см. "информация о продавце")о
02.11.2018 19:02:36
Спасибо вам....очень многим уже помогли)) через меня уже заказы делают,а я у вас по таким ценам низким всем покупаю
26.09.2018 17:39:38
Спасибо за решение
07.06.2017 20:29:39
Все отлично! Рекомендую продавца! )))