DHS - 2.1
№ 1.22. Given a vector a = α · m + β · n; b = γ · m + δ · n; | M | = k; | N | = ℓ; (M; n) = φ;
Find: a) (λ · a + μ · b) · (ν · a + τ · b); b) projection (ν · a + τ · b) to b; a) cos (a + τ · b).
Given: α = -7; β = 2; γ = 4; δ = 6; k = 2; ℓ = 9; φ = π / 3; λ = 1; μ = 2; ν = -1; τ = 3.
№ 2.22. From the coordinates of points A; B and C for the indicated vectors to find: a) the magnitude of a;
b) the scalar product of a and b; c) the projection of c-vector d; g) coordinates
Points M; dividing the interval ℓ against α :.
Given: A (-5, -2, - 6); In (3; 4; 5); C. (2 - 5; 4); .......
№ 3.22. Prove that the vector a; b; c and form a basis to find the coordinates of the vector d in this basis.
Given: a (7, 2, 1); b (3, -5, 6); c (-4; 3; 4); d (-1; 18 - 16)
Thank you for your purchase. If you have any questions, please contact us by mail (see. "Vendor Information")
09.10.2018 23:11:42
Спасибо,решения верные!
18.11.2017 7:49:53
Спасибо за решение!
13.11.2016 23:58:15
спасибо, выручил